↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PrologToPiTRSProof
LESS_IN → LESS_IN
LESS_IN → LESS_IN
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
U11(Left, less_out(X)) → IN_IN(Left)
U31(Right, less_out(Y)) → IN_IN(Right)
IN_IN(tree(Y, Left, X1)) → U11(Left, less_in)
IN_IN(tree(Y, X1, Right)) → U31(Right, less_in)
less_in → U5(less_in)
less_in → less_out(0)
U5(less_out(X)) → less_out(s(X))
less_in
U5(x0)
From the DPs we obtained the following set of size-change graphs:
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
LESS_IN → LESS_IN
LESS_IN → LESS_IN
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
U11(Y, Left, X1, less_out(X)) → IN_IN(Left)
IN_IN(tree(Y, X1, Right)) → U31(Y, X1, Right, less_in)
IN_IN(tree(Y, Left, X1)) → U11(Y, Left, X1, less_in)
U31(Y, X1, Right, less_out(Y)) → IN_IN(Right)
less_in → U5(less_in)
less_in → less_out(0)
U5(less_out(X)) → less_out(s(X))
less_in
U5(x0)
From the DPs we obtained the following set of size-change graphs: