Left Termination of the query pattern in_in_2(a, g) w.r.t. the given Prolog program could not be shown:



Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

Clauses:

in(X, tree(X, X1, X2)).
in(X, tree(Y, Left, X1)) :- ','(less(X, Y), in(X, Left)).
in(X, tree(Y, X1, Right)) :- ','(less(Y, X), in(X, Right)).
less(0, s(X)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

in(a,g).

We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x5)
in_out(x1, x2)  =  in_out(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x5)
in_out(x1, x2)  =  in_out(x1)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x5)
in_out(x1, x2)  =  in_out(x1)
IN_IN(x1, x2)  =  IN_IN(x2)
U51(x1, x2, x3)  =  U51(x3)
LESS_IN(x1, x2)  =  LESS_IN
U41(x1, x2, x3, x4, x5)  =  U41(x5)
U31(x1, x2, x3, x4, x5)  =  U31(x4, x5)
U21(x1, x2, x3, x4, x5)  =  U21(x1, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x5)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x5)
in_out(x1, x2)  =  in_out(x1)
IN_IN(x1, x2)  =  IN_IN(x2)
U51(x1, x2, x3)  =  U51(x3)
LESS_IN(x1, x2)  =  LESS_IN
U41(x1, x2, x3, x4, x5)  =  U41(x5)
U31(x1, x2, x3, x4, x5)  =  U31(x4, x5)
U21(x1, x2, x3, x4, x5)  =  U21(x1, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 5 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x5)
in_out(x1, x2)  =  in_out(x1)
LESS_IN(x1, x2)  =  LESS_IN

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS_IN(x1, x2)  =  LESS_IN

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ NonTerminationProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

LESS_INLESS_IN

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

LESS_INLESS_IN

The TRS R consists of the following rules:none


s = LESS_IN evaluates to t =LESS_IN

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LESS_IN to LESS_IN.





↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x5)
in_out(x1, x2)  =  in_out(x1)
IN_IN(x1, x2)  =  IN_IN(x2)
U31(x1, x2, x3, x4, x5)  =  U31(x4, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
IN_IN(x1, x2)  =  IN_IN(x2)
U31(x1, x2, x3, x4, x5)  =  U31(x4, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

U11(Left, less_out(X)) → IN_IN(Left)
U31(Right, less_out(Y)) → IN_IN(Right)
IN_IN(tree(Y, Left, X1)) → U11(Left, less_in)
IN_IN(tree(Y, X1, Right)) → U31(Right, less_in)

The TRS R consists of the following rules:

less_inU5(less_in)
less_inless_out(0)
U5(less_out(X)) → less_out(s(X))

The set Q consists of the following terms:

less_in
U5(x0)

We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x2, x3, x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x2, x3, x4, x5)
U1(x1, x2, x3, x4, x5)  =  U1(x2, x3, x4, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x2, x3, x4, x5)
in_out(x1, x2)  =  in_out(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x2, x3, x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x2, x3, x4, x5)
U1(x1, x2, x3, x4, x5)  =  U1(x2, x3, x4, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x2, x3, x4, x5)
in_out(x1, x2)  =  in_out(x1, x2)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x2, x3, x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x2, x3, x4, x5)
U1(x1, x2, x3, x4, x5)  =  U1(x2, x3, x4, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x2, x3, x4, x5)
in_out(x1, x2)  =  in_out(x1, x2)
IN_IN(x1, x2)  =  IN_IN(x2)
U51(x1, x2, x3)  =  U51(x3)
LESS_IN(x1, x2)  =  LESS_IN
U41(x1, x2, x3, x4, x5)  =  U41(x2, x3, x4, x5)
U31(x1, x2, x3, x4, x5)  =  U31(x2, x3, x4, x5)
U21(x1, x2, x3, x4, x5)  =  U21(x1, x2, x3, x4, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
IN_IN(X, tree(Y, X1, Right)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, X1, Right, less_out(Y, X)) → U41(X, Y, X1, Right, in_in(X, Right))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, Left, X1)) → LESS_IN(X, Y)
U11(X, Y, Left, X1, less_out(X, Y)) → U21(X, Y, Left, X1, in_in(X, Left))
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x2, x3, x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x2, x3, x4, x5)
U1(x1, x2, x3, x4, x5)  =  U1(x2, x3, x4, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x2, x3, x4, x5)
in_out(x1, x2)  =  in_out(x1, x2)
IN_IN(x1, x2)  =  IN_IN(x2)
U51(x1, x2, x3)  =  U51(x3)
LESS_IN(x1, x2)  =  LESS_IN
U41(x1, x2, x3, x4, x5)  =  U41(x2, x3, x4, x5)
U31(x1, x2, x3, x4, x5)  =  U31(x2, x3, x4, x5)
U21(x1, x2, x3, x4, x5)  =  U21(x1, x2, x3, x4, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 5 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x2, x3, x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x2, x3, x4, x5)
U1(x1, x2, x3, x4, x5)  =  U1(x2, x3, x4, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x2, x3, x4, x5)
in_out(x1, x2)  =  in_out(x1, x2)
LESS_IN(x1, x2)  =  LESS_IN

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS_IN(x1, x2)  =  LESS_IN

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ NonTerminationProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LESS_INLESS_IN

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

LESS_INLESS_IN

The TRS R consists of the following rules:none


s = LESS_IN evaluates to t =LESS_IN

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LESS_IN to LESS_IN.





↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

in_in(X, tree(Y, X1, Right)) → U3(X, Y, X1, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, X1, Right, less_out(Y, X)) → U4(X, Y, X1, Right, in_in(X, Right))
in_in(X, tree(Y, Left, X1)) → U1(X, Y, Left, X1, less_in(X, Y))
U1(X, Y, Left, X1, less_out(X, Y)) → U2(X, Y, Left, X1, in_in(X, Left))
in_in(X, tree(X, X1, X2)) → in_out(X, tree(X, X1, X2))
U2(X, Y, Left, X1, in_out(X, Left)) → in_out(X, tree(Y, Left, X1))
U4(X, Y, X1, Right, in_out(X, Right)) → in_out(X, tree(Y, X1, Right))

The argument filtering Pi contains the following mapping:
in_in(x1, x2)  =  in_in(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5)  =  U3(x2, x3, x4, x5)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
U4(x1, x2, x3, x4, x5)  =  U4(x2, x3, x4, x5)
U1(x1, x2, x3, x4, x5)  =  U1(x2, x3, x4, x5)
U2(x1, x2, x3, x4, x5)  =  U2(x1, x2, x3, x4, x5)
in_out(x1, x2)  =  in_out(x1, x2)
IN_IN(x1, x2)  =  IN_IN(x2)
U31(x1, x2, x3, x4, x5)  =  U31(x2, x3, x4, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IN_IN(X, tree(Y, Left, X1)) → U11(X, Y, Left, X1, less_in(X, Y))
IN_IN(X, tree(Y, X1, Right)) → U31(X, Y, X1, Right, less_in(Y, X))
U31(X, Y, X1, Right, less_out(Y, X)) → IN_IN(X, Right)
U11(X, Y, Left, X1, less_out(X, Y)) → IN_IN(X, Left)

The TRS R consists of the following rules:

less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
less_in(x1, x2)  =  less_in
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out(x1)
IN_IN(x1, x2)  =  IN_IN(x2)
U31(x1, x2, x3, x4, x5)  =  U31(x2, x3, x4, x5)
U11(x1, x2, x3, x4, x5)  =  U11(x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

U11(Y, Left, X1, less_out(X)) → IN_IN(Left)
IN_IN(tree(Y, X1, Right)) → U31(Y, X1, Right, less_in)
IN_IN(tree(Y, Left, X1)) → U11(Y, Left, X1, less_in)
U31(Y, X1, Right, less_out(Y)) → IN_IN(Right)

The TRS R consists of the following rules:

less_inU5(less_in)
less_inless_out(0)
U5(less_out(X)) → less_out(s(X))

The set Q consists of the following terms:

less_in
U5(x0)

We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: